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LETTER TO THE EDITOR 

Zero-dispersion stochastic resonance 

N G Stocks, N D Stein, S M Soskint and P V E McClintock 
School of Physics and Materials, lancaster University, Lancaster, LA1 4YB, UK 

Received 10 July 1952 

AbstracL A new form of stochastic resonance (sR), ment ly  discovered in underdamped 
nonlinear oscillators for which the dependence of eigenfrequency upon energy has an 
atremum, is investigated. Its charaneristic features are identified and discussed on the 
basis of linear response theory and the fluctuation dissipation theorem. In " n o n  with 
conventional si (in bistable Wlems), sharp increases in the nesponse lo a weak periodic 
force, and in Ihe signallnose ratio. occur with increasing intensity of external noise 
(temperature) within a csnain range. Unlike mnventianal SR. however, the dependence 
oi tine response on irequency is strangiy resonant. 

The physical mechanism underlying stochastic resonance (SR) [l-31, in which a weak 
periodic signal can be optimally amplified by the introduction of external noise of 
appropriate intensity, is usually assumed to involve fluctuational transitions between 
the coexisting attractors of systems with double-well (or multi-well) static potentials. 
We shall refer to phenomena arising through this mechanism as conventional SR. 
Numerous examples have been found [4] in physics, engineering and biology, as well 
as in geophysics [2,3]. The theory of conventional SR has been developed both in 
terms of Fokker-Planck approximations [S-91 and also through the application of 
I:--,.- -~ "_-_" ~ .t..,--. ,.-A -...I .I.- ~k~:..~,:,... +L~,..-... r r n  1-1 
U1IC'I' I G B p I w c  ,rrcury (I,", 'I,," LllG I I Y C L U L I " L L  "w"'yaLLY" L L L C U l r l l l  LA", "1. 

Recently, it has become apparent that SR is actually a much more general 
phenomenon than had previously been supposed. In particular, it has been shown 1121 
that significant stochastic enhancements of weak periodic signals can also occur, under 
appropriate conditions, in underdamped monostable systems. The most pronounced 
enhancements occurred for a system having an extremum in the dependence of its 
eigenfrequency upon energy w(  E), as sketched in figure 1. They were observed when 
the frequency R of the periodic force applied to the system (the signal) was close to 
the extrema1 frequency w, = w(E,) at which the dispersion [dw(E)/dE].=,. 
was equal to zero, and the phenomenon was consequently referred to as zero- 
dispersion stochastic resonance (ZDSR). In this Letter we identify and discuss the 
characteri$tic features of ZDSR, the ways in which it differs from conventional SR and, 
in particular, the extent to which noise-induced enhancements of the signal/noise 
miio may be anticipated. We first consider the phenomenon in relation to a general 
one-dimensional underdamped oscillator with coordinate q(i), 

t Permanent address: Institute of Semiconductors, Ukrainian Academy of Sciences, Kiev, Ukraine. 
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r < 1 ( f ( t ) )  = o ( f ( t ) f ( t ' ) )  = 4 r ~ q t  - ti) 

where f ( t )  is white Gaussian noise of zero mean and intensity T, r h the damping 
" a n t  which is assumed small, and AmsRi is the weak periodic signal whose 
enhancement will occur under SR conditions. The only restriction placed on the 
potential U(q) at this stage is that it should be such that w ( E )  will possess at 
least one extremum, as discussed above. After discussing ZDSR in quite general 
terms, applicable to any oscillator of this type, we will consider in detail a particular 
archetypal example of such a system, the tilted single-well Duffing oscillator. 

F@re I. Sketch U) illustrate the variation of 
eigcniqucmcy U( E )  with energy E typical 
of d e  class of cscillaton mnsidered. The 
eigenfrequenq has a minimum value um 5 
w(E.) at energy E,. The inset shows 
a zerodispersion spectral peak (Ihe sharp 
spike) appearing in the fluctuation SpeClNm 
or the g t e m  (I), (11) with B = 2, zr = 
1.7 x lo-'. T = 0.485 measured in the 
&."e of the periodic force ( A  = 0) using 
an electmnic analogue simulator [19]. 

The physical origins of ZDSR can be understood qualitatively in terms of WO 
distinct but linked considerations. Erst, it is possible for the response to the periodic 
force to become substantial, even at a frequency R W, different from the oscillator's 
natural (E  + 0) frequency w", if the system is 'tuned' by the introduction of external 
noise of appropriate intensity T (or equivalently by raising the temperature) such 
that the probability, proportional to e-Em/T, of its reaching energy E, becomes 
significant. The response may therefore be expected to increase rapidly with increasing 
T. Secondly, and of central importance for this letter, the lack of dispersion near w, 
means that fluctuations in the energy of the system will exert only a minimal disruptive 
influence on the resonance (because the resonant frequency is then virtually energy- 
independent). 

Provided that the periodic force is weak, a quantitative description of SR in quasi- 
thermal equilibrium systems can be developed on the basis of LRT and the fluctuation 
dissipation theorem 110-121. We suppose that the ensemble-averaged response of 
the system to a weak periodic force AcosRt can be characterized by a susceptibility 
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x(% so that 

( q ( l ) )  = A R e [ ~ ( n ) e - ' ~ ' ]  (2) 

where x ( R )  can [13] in turn be expressed in terms of the fluctuation dissipation 
theorem [I41 

. Im x(fi) = (* f i /T )Qdn) .  

Here, P implies the Cauchy principal part and 

m 
Qu(w) L/ dte-'"'(q(t)q(O)) 

277 ..m 

k the spectral density of the fluctuations (SDF) of the system in the absence of the 
periodic force. It has been suggested [12,15] that SR-like phenomena are to be 
anticipated in any physical system where Qu(w) possesses one or more sharp peaks 
that increase rapidly with increasing T. Accordingly, we suppose that Qu(w) has 
a high, narrow maximum at some frequency w,. (If the potential resembles that 
sketched in figure 1, w, will correspond, as above, to the extrema1 frequency at 
E = E,.) Thus we can write 

Q d w )  = Q p k ( w )  + Qhr(W) (6) 

where Qpak(w) has a maximum of magnitude Q, at w, whose width Aw < w,. 
We suppose that QLr(w) is negligible at w,, but that it may still be substantial at 
frequencies far from w, in comparison to Aw. If the signal frequency R zz w,, the 
contributions to Re [x(R)],  i.e. to the integral in (3), from frequencies close to U, 
(i.e. for Iw, - w,I <- A w )  and those far from it are respectively 

where S, = JdwQrar(w) is the area under the far part of the SDF Q,,(w), and W, 

lies within the range of the maximum of Qbr(w). If Qhr(w) has several well-defined 
maxima, F,, should be a sum of analogous terms for each maximum. 

It can be seen from (7) and (8) that the conhbution to the real part of 
the susceptibility from frequencies close to w, does not depend on the width 
A w  of the peak QPa?(w) and that, if the maximum Q, of this peak is high 
enough, then this contribution will dominate. Correspondingly, given (4), i.e. that 
Im[x(Q w,)] - Q,w,/T, the absolute magnitude of the response at fi z W, is 
given by 

(9) 
Qmwm Ix(n)l= J (ReIx (n ) l ) z+  ( W x ( f i ) l ) '  - 
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If Q, increases rapidly with T, then the response of the system to a weak periodic 
force A COS Rt  of frequency n close to w, will also increase rapidly with T. Within 
the linear response regime, where the signalhoise ratio [10,11] is given by 

R = aA21x(R)I2/Qu(Q) (10) 

it is clearly possible for R to rise with increasing T provided only that the increase 
in l ~ ( R ) 1 ~  with T is sufficiently rapid (i.e. faster than that of Qo(R)). In the 
present case, where we assume that the height Q,  of the narrow peak in the sDF 
at w, increases very rapidly with T, (9) and (10) clearly demonstrate that stochastic 
resonance in R is to be expected. 

Thus, in the LRT picture, the occurrence of ZDSR stems from the extremely narrow 
zero-dispersion peaks (ZDPs) [16] that arise in the spectral density of the fluctuations 
of the noisedriven underdamped oscillator (in the absence of the periodic force) 
whenever the form of w(E) has an extremum. For the sake of definiteness, we 
now consider a particular system of this type, namely the tilted single-well Duffing 
oscillator, for which the potential function is 

U ( q )  = ;q2 + a q 4  + B q .  (11) 

In the absence of damping, and with no noise or periodic force, the dependence of the 
frequency w(E) of conservative vibrations on the energy E = 4q2 + U ( q )  possesses 
a minimum [17], of the form sketched in figure 1, provided that the modulus of the 
tilt parameter IBI > 8/(7)'/* 0.43. Correspondingly, a ZDP may be expected to 
arise at the extrema1 frequency w, in the fluctuation spectrum of the underdamped 
oscillator (l), (11) with A = 0, provided that the noise intensity exceeds some critical 
value, T, a E, [18]. For small enough r the shape of the ZDP is universal, its width 
Aw a r1I2 and its magnitude [16,18] is 

where S is a universal function and the scaling factor C, a r-'/4 exp(-E,/T). The 
ZDP for (l), (11) has recently been observed (191 in analogue electronic experiments 
(see figure 1 inset) and found to rise extremely rapidly (exponentially) with increasing 
T, in excellent agreement with the theoretical predictions [16,18]. 

It is evident, therefore, that the system (l), (11) with IBI > 0.43 meets all 
the mnditions required for the Occurrence of ZDSR: in particular, an increase of R 
with increasing T, as well as of Ix(R)l, is to be anticipated. In order to provide 
a quantitative description on the basis of (3)-(5) and (lo), all that we need is 
the fluctuation spectrum Qu(w) of the system in the absence of the periodic force 
(A = 0), which can readily be found numerically using the method given in [17]. 

Some results of such calculations are shown in figures 24. Figure 2 plots the 
signalhoise ratio R as a function of noise intensity T for different values of the 
damping " a n t  r. It is immediately evident that, for large r as in cum (d), R 
decreases monotonically with increasing T. For smaller r where the D P  is more 
pronounced through C, in (12), on the other hand, there is a range of T for which 
R increaser markedly with increasing T, i.e. a strong manifestation of the ZDSR 
phenomenon is seen for R, not just for the response as ohsewed [12] previously. 
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The general shape of R( T), with a rapid rise followed by a slower decrease as T 
iS increased, is similar to that Seen in conventional SR [1,4,5]. It is clear that the 
magnitude of the ZDSR increase of R rises as r becomes smaller (0: r-Il4), just as 
expected on the basis of the simple arguments presented above. It may conveniently 
be characterized in terms of the ratio of the local maximum and local minimum values 
of RV), 

M = WRmm/Rmin) 

where we set M = 0 when, as e.g. in curve (d), R ( T )  is monotonic. 

Figure 2 Ihe signallnoise ratio R for the 
system (I). (U), cilculated from (3)-(5) and 
(IO) for different values of r where Qo(w) 
in the atsence of lhe periodic force (A = 0) 
was obtained on the basis of the method 
given in 117. Ihe value of R has teen 
chosen in each cise 10 mrreJpond 10 the 
maximum of h e  WP. I h e  CUNS plot R 
as a function of noise intensity T for (a) 
2r = io-'. R = 1.794; @) zr = 10-3, 
Cl = 1.798: (c) 2r = Cl = 1.816 (d) 
zr = 10-1, n = 1.846. 

R 
50 
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Figure 3. Demonstration d the sensilivily 
of msu U) small changes in lhe freequenq 
R of the periodic force. 'The ralculated 
signallnoise ratio R is plotted % a function 
oi noise iniensiiy T ior ihe system (ij, 
(11) with zr = lo-' and (a) R = 1.784; 

2 @) 1.794; (c) 1.804. I h e  inset plots the 
R magnitude parameter M directly as a 

10 

100, 0 q 1 

T function of R for = 10-4. 

It is interesting to compare 2DSR with conventional SR. One of the most marked 
differences is that ZDSR is a strongly resonant phenomenon. Unless the frequency R 
of the periodic force is vely close to U,, M = 0, i.e. ZDSR does not manifest itself 
for R. Figure 3 shows the effect of small changes in R for 2r = lo-' and it is evident 
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Figure 4 Illustration of the strongly 

- resonan1 behavioir charaderistic of W S R .  

?he calculated response 1x1 for the System 
(1). (11) is plotted directly 86 a function 
of the frequency Cl of the periodic force 

I I I I with Zr = lo-' for thme different noise 
intensities: (a) T = 0.8; @) T = 0.4; (c) 
T = 0.2. Note the highly a p n d e d  abscissa 

0 
1.76 1.78 1.80 1.82 

Q scale. 

that a change of f0.6% in R is enough to eliminate the phenomenon completely; the 
inset shows how the parameter M varies with R. The modulus of the susceptibility 
1x1, which determines the response amplitude through (2), is plotted against R (with 
a highly expanded abscissa scale) for three values of T in figure 4, demonstrating 
the resonant character of ZDSR explicitly. This behaviour is in striking contrast to 
that seen in conventional SR, where the response decreases slowly and monotonically 
with increasing R [5]. For the particular system (l), (11) and values of r considered 
in the present work, the maximum value of the signalhoise enhancement parameter, 
M = 0.86 for 2r = was considerably less than the best results (M Y 2.8) 
achieved in conventional SR [4]; but there is, of course, no limit in'principle to the 
magnitude of A4 attainable in ZDSR by making r smaller. 

In conclusion we would emphasize that the phenomenon of ZDSR, whose 
characteristic features are discussed above, is in no way confined to the particular 
model (l), (11) considered. Rather, ZDSR is a quite general phenomenon 
to be anticipated in all underdamped oscillators for which the dependence of 
eigenfrequency on energy possesses one or more extrema [16,18] including, for 
example, superconducting quantum interference devices (SQUIDS) [20]. 

We freely and warmly acknowledge our substantial indebtedness to Mark Dykman 
whose highly original perception of SR provided us with the tools needed to develop 
this work. The research was supported by the Science and Engineering Research 
Council, by the Royal Society of London, and by the European Community. 
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